
4

Cellular Automaton Tool User Manual

Gesellschaft für Mathematik und Datenverarbeitung
Postfach 1316

D - 53731 Sankt Augustin 1

Cellular Automaton Tool
Version 8.10.93

User Manual

Author:
Georg Jünger

(C) Copyright 1993 by GMD, Sankt Augustin

Introductory notes 04.01.02

5

Table of Contents

1. Introductory Notes .. 4

2. Quick Tour through CAT.. 5
2.1 Starting CAT.. 5
2.2 Loading and Compiling a Program.. 6
2.3 Executing and Controlling a Program.. 7
2.4 Editing a Program.. 9
2.5 Printing .. 10
2.6 Window Handling.. 11
2.7 Changing Properties and Appearance of the Cell Matrix... 11
2.8 Using the Online Help System... 14
2.9 Leaving CAT ... 15

3. Complete Overview of Windows, Menus, Buttons and Boxes.. 16
3.1 Windows.. 16

3.1.1. CAT Main Window.. 16
3.1.2. STATE Window... 17
3.1.3. RECIPE Window ... 18
3.1.4. LIST Window... 18
3.1.5. Plane Window (Starring .CAS File)... 19
3.1.6. Palette Window (Starring .CAP File)... 19

3.2 Menues .. 20
3.2.1. 'File'.. 20
3.2.2. 'Edit' ... 20
3.2.3. 'Search' ... 21
3.2.4. 'Window' .. 21
3.2.5. '?' (Help) ... 21
3.2.6. Menu Accessible via State Control Button .. 22
3.2.7. Menu Accessible via Palette Control Button.. 22
3.2.8. Menu Accessible via Menu Button .. 23
3.2.9. Local Menu Accessible via Right Mouse Key ... 23
3.2.10. Local Menu Accessible via Shift / Right Mouse Key... 23

3.3 Buttons and Labels .. 24
3.3.1. Buttons and Labels Contained in the Main Window.. 24
3.3.2. Buttons and Labels Contained in the STATE Window.. 24

3.4 Dialog Boxes ... 25
3.4.1. 'Colors' Dialog Box .. 25
3.4.2. 'Assign Value' Dialog Box ... 26
3.4.3. 'Initialize States' Dialog Box .. 26
3.4.4. 'Initialize Palette' Dialog Box... 27

4. CARP Instructions Reference Guide 28
...
%.. 28
* ... 29
+... 29
-.. 29
:=.. 30
<... 30
<=... 30
<>... 31
=... 31
>... 31
>=... 32
AND .. 32
Any8Sum... 32
BarrelForm... 33
Beep... 33
BEGIN ... END.. 34
Brake.. 34
Comments in a CARP program ... 34
Colors .. 35
CONST.. 35
DelBrushes... 36
DIV.. 36

Introductory notes 04.01.02

6

EVENT.. 36
Expressions.. 37
FOR ... TO ...BY ... DO ... OD .. 37
GetX .. 38
GetY .. 38
Identifiers... 39
IF .. THEN .. ELSE .. FI .. 39
INV.. 39
MOD.. 40
MooreSum ... 40
NeumannSum .. 41
NOT... 41
OddCell.. 42
OR ... 42
PARALLEL DO .. 42
ParallelMethod .. 43
PillowForm.. 43
PipeForm ... 44
PlClipActive .. 44
PlClipAll.. 44
PlClipXY... 45
PlFillRandom... 45
PlFillUni .. 45
PlFillUpStairs .. 46
PROC... 46
Random.. 47
Randomize ... 47
RECIPE ... 48
REF.. 48
RePaint .. 49
REPEAT .. UNTIL .. 49
RGBBrush ... 50
RGBPalette .. 51
RingForm... 51
Self... 52
SetLattice ... 53
SheetForm.. 53
SHL.. 53
ShowCell ... 54
ShowKind .. 54
ShowPlane ... 55
SHR ... 55
Statement ... 56
VAR... 57
WHILE ... DO ... OD... 57
WinClipActive... 57
WinClipXY.. 58
WinClipAll .. 58
WrDCaps ... 58
WRITE... 59
WrMCaps... 59
WrPPars... 60
XOR... 60
XYBound... 61
XYSize .. 61
YSize ... 62
Zet.. 62

Appendix A: Hardware and Software Requirements... 63
Appendix B: Installation of CAT .. 63
Appendix C: Troubleshooting... 63
Appendix D: Known Bugs .. 63
Appendix E: Runtime Message List .. 64
Appendix F: Compiler Error Message List ... 65

Introductory notes 04.01.02

7

1. Introductory Notes

The Cellular Automaton Tool (CAT) is a tool to build and visualize cellular automatons in an
easy-to-use way. Its pascal-like language CARP (Cellular Automaton Programming Language) is
an adequate means to build cellular automatons of your own or to transfer samples from the
literature.

First and foremost, CAT uses a matrix of colored cells (in the "STATE" window) to show the state of
each cell of the cellular automaton for each generation. Apart from a representation in colors, the
cell state can also be expressed in decimal or hexadecimal figures.

Both features, high-level language and visualization, should make it attractive to learn about the
fascinating world of such models of the "real" world. On the same level of importance, CAT may be
taken as a tool to learn about the parallel computing paradigm. Each cell is then taken as a
processor that works concurrently with all other cell processors.

For both, beginners or advanced users, it is advisable to start with the "Quick Tour" and execute
some sample programs. Later on, experienced users might continue with the CARP language
description. He or she will soon grasp the power and possibilities of this language. Beginners
should start by changing sample programs. Then, they may enlarge the complexity of their
programs and the set of used CARP instructions step by step.

Introductory notes 04.01.02

8

2. Quick Tour through CAT

2.1 Starting CAT

* To start CAT, doubleclick the CAT icon or choose the program manager and doubleclick
CAT.EXE in the directory CAT has been installed in.

Figure 2.1 CAT icon

 CAT comes up with its welcome panel. Depending on the CAT's last state and from the size of
your data display, the CAT welcome panel may vary. Starting CAT you should be familiar with the
picture below anyway.

Figure 2.2 CAT welcome panel

The CAT welcome panel consists of
➀ a title bar with program name, version number and, separated by a colon, rounds of program

execution,
➁ a menu and
➂ a button bar,
➃ a window RECIPE containing program text (may be empty),
➄ a window STATE containing the matrix of cells,
➅ a window LIST containing program output or error messages (may be empty).

Introductory notes 04.01.02

9

2.2 Loading and Compiling a Program

Loading a Program

To load an existing program

* Select Open in menu File.
 CAT shows a file selection box to choose a program file.

The extension ".cat" is preset for models in CAT (a kind of project or workspace file). The list of
directories shown in this example is probably different from your configuration.

Figure 2.3 File selection box

* Select a file <model name>.cat (e.g. life_1.cat). (The dialog box is used as in Windows.)
 The chosen program file will pop up in the RECIPE window and the last state of the cell matrix

will be displayed in the STATE window. Moreover, other attributes specific to this model will be
restored (color palette, size and arrangement of CAT windows etc.).

Compiling a Program

* Click the button Comp in the left corner of the grey icon bar (see button 1 in figure 2.5).
 If compilation was successful nothing noticeable will happen.

Otherwise you will hear a short beep and this box will be shown:

Figure 2.4 CAT ERROR box

* Click the button OK.
 The box will disappear and you can now scroll inside the LIST window until you find the offending

instructions. They will be flagged by the marks "(*** ERROR" and "***)" pointing out an error key
number and the offending instruction. A sample: "(*** ERROR 140: Parser => unknown identifier
*** Colordds ***)". The last word is the offending program instruction. Hints for error corrections can
be found in Appendix F 'Compiler Message List'.

Introductory notes 04.01.02

10

Compiling can also be achieved by clicking one of the buttons from "E0" to "E5". Before executing
the code of the corresponding event (the button "E0" e.g. stands for event 0, see button 3 in figure
2.5), CAT checks whether the current CAT program has been already compiled. If not, CAT will
compile it.

2.3 Executing and Controlling a Program

Some Constituents of a Cellular Automaton Tool Program (CARP Program)

To characterize the programming interface cellular automaton models are programmed by, we use
the word CARP. CARP is an acronym for CellulAR Automaton Programming Language and is a
high-level language resembling PASCAL or MODULA.

Apart from definitions of variables or references, each CARP program has at least one element
called "EVENT" starting with the keyword "EVENT" plus name plus semicolon and ending with
another event or the keyword "END.". Events contain the program instructions, by which the state of
each cell of the cell matrix is defined. Generally speaking, events are program parts existing
independent of each other and therefore executable on demand. There is only one restriction: only
one event can be executed at a time and can thus influence the state of the cell matrix; all other
events are stopped in this case. Take a look at one of the sample programs to get an impression of
this structure.

The event "SetUp" has a special function. Clicking the corresponding button (see button 2 in figure
2.5) executes instructions of the particular event "SetUp" that provides initialization of the cell
matrix. It is implicitly executed if any other event is carried out. The "SetUp" event is not a
necessary element of a CARP program. If it is missing default values for the color palette, the
topology and other settings are used.

A description of the CARP programming interface is found on the pages 28 - 64.

Enlarging the Size of the STATE Window

Before working with the STATE window, bring it up and maximize it.
* Select STATE in the menu Window.

 The focus is set on the STATE window. (This might also be achieved by clicking in the STATE
window if it is already visible.)
* Maximize the STATE window by clicking the maximize button in the top right corner (upward
pointing triangle, see 6 in figure 2.5).

 The STATE window becomes maximized.

Figure 2.5 Event control buttons (Comp(ile) (1), SetUp (2), Event 0 Single
Step (3), Event 0 Run (4), Stop (5), Maximize (6)

Introductory notes 04.01.02

11

Starting Event 0

* Click the button E0 (button 3 in figure 2.5) in the grey button bar (depending on the size of your
data display or on CAT's current window size, the bar may be stretched so that all buttons are
aligned). Clicking E0 as opposed to clicking the run button (see button 4 in figure 2.5) means
stepwise execution of event 1.

 A pattern of pink and blue cells fills the STATE window representing a random dissemination of
'dead' and 'alive' cells. Event 0 should be used only once to initialize the cell matrix with a
randomized dissemination of 'dead' and 'alive' cells. Depending on the properties of your hardware
it may take a few seconds until the STATE window gets filled.

Moreover, you will notice four pieces of written information:

➀ After the colon, the title bar on the top of the CAT window contains the sum of rounds of all
events whose code has been executed. Now it shows one round being completed.
➁ A label "Round" to the right of the ten STATE-window-related icons repeats the number of
completed rounds.
➂ A label on the right hand side of the icon bar contains the event number and the mode of
execution. The keyword "Step" stands for stepwise execution, "Run", however, for execution in run
mode.
➃ A label "Time" contains the time passed by in hh:mm:ss,mm format, representing hours:
minutes: seconds, milliseconds.

Figure 2.6 Event-related information

Starting Event 1 in Stepwise Mode

* Click the button E1 in the grey button bar.
 After a short time the dispersion of 'dead' (blue) and 'alive' (red) cells changes according to the

algorithm contained in the program text of event 1. For each cell the number of 'alive' neighbors is
counted: is it 2 or 3, an 'alive' cell remains 'alive', otherwise it will 'die'. However, if a 'dead' cell is
surrounded by just 3 'living' cells, it will become 'alive'. The equivalent labels are changed to 'Round:
2' and 'Event 2: Step'.

Note:
Each clicking of the buttons E0 to E5 will cause only one execution of the corresponding program
text.
If you click a button (for example E4) that is not assigned to a corresponding event description in a
CARP program, the cell matrix in the STATE window will remain unchanged.

Introductory notes 04.01.02

12

Continuing Event 1 in Run Mode

* Now, click the run button below E1 (see button 4 in figure 2.5).
 The program code of event 1 will now be executed continuously. The state of all cells will be

computed and shown in the STATE window round by round. You will be informed about the actual
round by the corresponding label 'Round'.

Stopping Program Execution

* Click the button "Stop" (see button 5 in figure 2.5).
 The execution of any program code will be stopped. The STATE window will freeze the last state

of the cell matrix. From here, you can restart any event in stepwise or run mode. You may also skip
from one event to another by clicking different event buttons. If you click, for example, first the run
button below E0 and then the run button below E1, the program code of event 0 will be executed
until the next mouse click. When the current execution of event 0 is completed CAT will continue to
execute the program code of event 1 without any interim step.

Hiding the Display of the Cell Matrix

Computing the new state of the STATE window for each generation of the cell matrix is quite CPU-
time-consuming. If you want to elapse output of some generations, you can suppress the display of
the cell matrix and speed up computation.

* Click the show / hide matrix button in the icon bar (see button 1 in figure 2.7).
 Instead of the cell matrix, a grey background is displayed with a hint how to rebuild the cell

matrix. Execution of the current event in run mode is continued as can be seen from the round
counter in the title bar.

Figure 2.7 Graphic control buttons: Show/hide matrix (1), Numeric state
(2), Color mapping (3), Hexadecimal format (4), Magnifier (5), Color
customizing (6), RePaint (7), State control (8), Palette customizing (9),
Menu (10)

* Click the show / hide matrix button in the icon bar again.
 The cell matrix is displayed in the STATE window again.

Note: Be patient if the code of any event is executed in run mode. It takes some time until the last
execution of the event's program code is executed before CAT can switch to displayless mode.
Another way to accelerate program execution is to show only every 10th or <n>th generation of the
model by the corresponding use of the 'ShowPlane' instruction.

2.4 Editing a Program

Bring up the RECIPE window by means of the menu Window or click on this window if any part of it
is visible.

* Click on any part of the text.
 You will get a blinking text cursor and be able to write new text in insert mode.

To learn the different functions, change for example the value of the XYSize and return to the
RECIPE window. If you chose a valid value (positive value < 130), program execution is continued

Introductory notes 04.01.02

13

with new XSize and YSize values after pressing the corresponding event button. Otherwise, you will
get an error message in the LIST window.
In general, most editing functions like Cut, Copy and Paste accessible by items of the Edit menu or
by a local menu (see page 23) can be executed as in Windows 3.x, shortcuts may differ.

Note: Only the RECIPE window is ready for text editing, the LIST window is read-only.
Any modification of the text will be indicated by a "Modified" mark in the status bar on the bottom of
the RECIPE window. To the left of this mark, the cursor position is shown with its current x- and
y-coordinates.
Pattern matching functions (Find, Replace, Next) can be found in the menu Search.

2.5 Printing

CAT provides two forms of printed output:
- printing the contents of the RECIPE (CARP program) or LIST window by aid of a local menu
- printing the contents of the STATE window by means of the state control button (see button 1

in figure 2.8). The state of each cell may be alternatively printed with its decimal or its hexa-decimal
value. There is no facility for printing the colored cell matrix.

Printing the Contents of the LIST or the RECIPE Window

* Bring up the text window you want to print (LIST or RECIPE window).
 The corresponding window will have the focus indicated by a blue title bar.

* Click the right mouse button upon the corresponding window.
 A local menu pops up.

* Select Print and click OK in the print dialog box.
 The corresponding file is printed on your standard printer.

Figure 2.8 STATE window with numeric cell and color mapping representation

Introductory notes 04.01.02

14

Printing the Contents of the STATE Window

* Bring up the STATE window.
 The STATE window gets the focus indicated by a blue title bar.

* Click the state control icon (see button 1 in figure 2.8).
 A menu pops up.

* Select Print and click OK in the print dialog box.
 A text file representing the current state of the .CAS file (CAT State file) is printed on your

standard printer. The cells are represented by their decimal value (default). Click the hexadecimal
format button (button 4 in figure 2.7) before printing if you want to shift to hexadecimal output.

Note: There are restrictions on printing large STATE files although CAT automatically tries to
choose an appropriate smaller font. Setting XYSize to values below 30 should work anyway.

2.6 Window Handling

Each CAT model of a cellular automaton contains at least three windows. This number might be
increased by windows created by means of the Show or Print function. In this case, you may find it
difficult to work your way through the CAT environment. Therefore, there are some functions in the
menu Window to aid your orientation.

Bringing up all CAT Windows at a Time

* Select Tile in menu Window.
 All windows currently contained in your CAT environment are shown at the expense of the space

of each window. You can now select and then maximize the window you want to work with or resize
one window at the expense of other windows.

Bringing up all CAT Windows in Overlapping Mode

* Select Cascade in menu Window.
 All CAT windows are now shown overlapping each other, the first being presented in an

acceptable size. If you want to put the focus on a different window, click on any of its parts to bring it
up.

Bringing up a Specific CAT Window

* Click the menu Window.
 All windows currently contained in your CAT environment are identified in the bottom part of this

window by their names.
* Drag the mouse pointer to the name of the window you want to bring up.

 The corresponding window comes up and may be maximized if necessary.

Note: The last method is advisable if you are already sure about the window you want to work with.
To save window space, you also may iconify a window, e.g. the LIST window.
CAT windows may not be closed by using the close button.

2.7 Changing Properties and Appearance of the Cell Matrix

Apart from defining size, state and colors of the cell matrix by certain instructions of the CARP
program you can interactively change the appearance and some properties of the cell matrix. This
is done by the group of buttons from the numeric cell state button to the palette customizing button
(see buttons 2 to 9 in figure 2.7).

Introductory notes 04.01.02

15

Showing the Cell State by Numbers

* Click the numeric cell state button (button 2 in figure 2.7)
 A small figure in the top left corner of each cell comes up, representing its current state. The

figure is partially surrounded by the color that is associated with this value (see the cell matrix in
figure 2.8 showing the numeric cell state and the color mapping).

Regaining the previous appearance can be achieved by clicking the same icon a second time.

Note: If your CAT model has a great number of cells, CAT may find no font being small enough and
may thus refuse to show the cell state by figures (error message is "Window is too small to display
the state"). A workaround is in some cases to reduce XYSize in the CARP program or to maximize
the STATE window.

Showing the Color Mapping Entry Associated to each Cell

* Click the color mapping button (button 3 in figure 2.7).
 A small figure in the top left corner of each cell comes up, representing the according color

palette entry. This entry is a pointer to a RGB triple defining how a certain state of a cell is
represented by a specific color (see the cell matrix in figure 2.8 showing the numeric cell state and
the color mapping).

Regaining the previous appearance can be achieved by clicking the same icon a second time.

Note: If your CAT model has a great number of cells CAT might refuse to show the color palette
entry (error message is "Window is too small to display the color mapping").
A workaround is to reduce XYSize in the CARP program or to maximize the STATE window. If the
cells are big enough it is possible to show the figure of the cell state and the color palette entry at
the same time. The cell state is shown at the top of a cell, the color palette entry at the bottom. For
more information on how to handle the color mapping and color palettes see page 50 and 51.

Switching from Hexadecimal to Decimal Figure Display

Depending on your preferences, it might be adequate to change the number format from
hexadecimal to decimal.

* Enable figure display of the cell state or the color mapping. Then click the hexadecimal format
button (button 4 in figure 2.7).

 The representation of the figures will change from decimal format to hexadecimal.
* To return to the previous state click the same button again.

 The representation of the figures will change again.

Removing the Frame around the Cell Matrix

Depending on the (optional) value of XYBound in the CARP program, your STATE window has a
narrower or broader frame of darker cells. These cells are a kind of "virtual" continuation of the cell
matrix beyound its edges according to the chosen topology. This border area may be displayed or
hiden.

* Click the magnifier icon (button 5 in figure 2.7).
 The frame of the plane window caused by the XYBound value disappears and the cells become

slightly bigger.

This, of course, works only if XYBound is defined.

Introductory notes 04.01.02

16

Editing the Cell Plane

In general, it is much too time-consuming and complicated to give a whole cell matrix a certain
shape cell by cell. This is easier to achieve by using instructions of your CARP program or by
means of menu items of the state control button (see 8 in figure 2.7). Nevertheless, it is sometimes
sufficient to initialize the whole cell matrix with an identical value for each cell by means of the state
control button and to alter certain cell states 'manually'.

* Initialize the cell matrix by clicking the state control button and choosing Single Value 0.
 The cell matrix will adopt a uniform color.

* Click the left mouse button on a cell you want to change.
 The cell adopts the next value that is inside the range of possible different states (depending on

the Zet value of your CARP program). The change of the cell state is mostly (depending on the
chosen color palette) revealed by a different color.
* Click the right mouse button on the same cell.

 The cell will adopt its genuine state.

Note: Each click on the cell will make it adopt the next state of its defined <n> states. If e.g. only two
states are defined the cell state will toggle between these two states.
Additonally, you may also edit the cells of the STATE window if the state of each cell is expressed
by figures (number display mode). This is a good means to control the mouse clicks.
Clicks on the right mouse key decrement the state value, clicks on the left mouse key increment the
state value.

Changing the Color Mapping for one Cell

There are about 230 colors defined by a triple of red, green and blue values that can be used to
characterize a certain cell state. Changing the color mapping for a cell is done in two steps.

* Click on one cell of the kind whose color mapping you want to change. Then click the color
customizing button (button 6 in figure 2.7).

1 2 3

Figure 2.9 'Colors' selection box

 A box pops up with three slider scroll bars representing the colors red, green and blue (see 1 in
figure 2.9) and, within a white area, statements about the current cell and its corresponding color
palette index to be changed (see 2 in figure 2.9).
* Click on one of the three slider scroll bars and drag it to the left or to the right.

 The corresponding color control panel on the right side of the box changes its color very quickly,
whereas the other two smaller control panels remain unchanged. The decimal and hexadecimal

Introductory notes 04.01.02

17

value for the color being changed is also displayed. The summarizing color panel in the bottom right
corner changes proportionally to the changes of its component colors (see 3 in figure 2.9).
* Change all three colors until you find a color value you wish to save. Click the OK button.

 All cells of this kind are now assigned to the changed color mapping value and show their new
color in the STATE window.

Note: Changes of a single color mapping or a whole color palette (the sum of all color mappings)
are only valid within a certain model. The CARP language offers additional ways to define color
palette settings (see pages 50 and 51). In this case, the color selection box may be of use to get the
defining decimal or hexadecimal values of an adequate color in a handy way.

2.8 Using the Online Help System

CAT provides an online help system with hypertext features.

* Click the question mark in the menu bar (see 1 in figure 2.10).

Figure 2.10 Access to the help system

 A menu pops up containing the items Help index, Help on Help, About (see figure 2.10).
* Select Help index.

 A window CAT Helpsystem comes up, containing an overview of all provided keywords. Any
colored keyword can be activated by a mouse click and leads you to a short information text. To
return to the point of the help system where you started from
* click the Contents or Back button of the Help window.

 You find yourself back on the overview page of the help system. To leave the helpsystem,
* click either the close button in the top left corner of the "CAT Helpsystem" window or use the Quit
command of the File menu.

 The "CAT Helpsystem" window will close.

Note: To activate the online help system you can alternatively press the <F1> key. You will then
come directly to the overview page of the help system or to the page which was displayed during
the previous interrogation of the help system.
To get help information on the help system itself and its usage, click the question mark (see button
1 in figure 2.9) and select Help on Help.
If you want to print text from the online manual select Print from the File menu.

Introductory notes 04.01.02

18

2.9 Leaving CAT

CAT can be left if no code of any event is executed. To leave

* doubleclick the close button in the top left corner of the "CAT " window (see 1 in figure 3.1).
 The "CAT" window will close.

Note: Alternatively, you can select Close in the system menu that pops up if you click the close
button (see 1 in figure 2.10) or you can select Exit in menu File (see item 3 in figure 2.10). If you
want to quit CAT only temporarily, you can iconify the CAT program by selecting Symbol in the
system menu. If the next application you want to use is rather memory-consuming, it is advisable to
quit CAT completely.

Introductory notes 04.01.02

19

3. Complete Overview of Windows, Menus, Buttons and Boxes

3.1 Windows

3.1.1. CAT Main Window

The CAT main window pops up after clicking the CAT icon. According to the size of your screen or
the size of the main window CAT was last left in the buttons of the button panel (3) may appear
aligned.

1 2 3 4 5 6 7 8 9 10

Figure 3.1 CAT Main window

Name Function

Close button Closes the CAT window and finishes the CAT application.
Menu panel Provides access to different menus.
Button panel Provides different buttons for event control.
RECIPE window Contains your CARP program.
STATE window Contains the cell matrix.
Program label Program name and version number.
Round counter One of the two generation or round counters.
Event label Contains the current event name and runtime mode (Step / Run).
LIST window Contains compiler and runtime messages and output caused by your

CARP program.
Maximize button Enlarges your CAT application to the whole screen.

Introductory notes 04.01.02

20

3.1.2. STATE Window

The STATE window displays the cell matrix of your current cellular automaton. The cell matrix may
be customized in many ways (see pages 11 - 12 and 24 - 27).

1 2 3 4 5 6

Figure 3.2 STATE window

Name Function

Close button Disabled for this window.
Button panel Allows customization of several properties (color mapping, color

palette, figure format etc. Further description on p. 24 and p.11 - 14).
Cell matrix Area in which the cells are displayed with their current color and/

or figure values.
Round counter Second round or generation counter.
Time label Shows the time passed by in hh:mm:ss,msms (hours : minutes :

seconds, milliseconds).
Maximize button Enlarges the STATE window to all available CAT space.

Introductory notes 04.01.02

21

3.1.3. RECIPE Window

The RECIPE window is the place where you can enter your CARP program (see p. 28 - 62) by
which your cellular automaton is programmed.

1

2

3 4

Figure 3.3 RECIPE window

Name Function

Window and file label Indicates the file name of your CARP program (extension .CAR).
CARP program Editable CARP program text.
Cursor position Shows the current cursor position with its equivalent x- and y-values.
'Modified' mark Appears as soon as anything in this window has been changed.

Editing work is supported by functions of the Edit (see p.20), Search (see p.21) and the two local
menus (see p.23). The latter are invoked either by clicking the right mouse key or by clicking the
right mouse key while holding the shift key pressed. Local menu functions also include printing and
font customization.

3.1.4. LIST Window

The non-editable LIST window contains runtime, compiler error messages and messages created
by your CARP program.

1

2

3

4

5

Figure 3.4 LIST window

Introductory notes 04.01.02

22

Name Function

File name Indicates the name of the corresponding file (extension .CAL).
CARP program Repeated CARP program (not editable).
Compilation result Indicates whether compilation has been successful or not.

You will find the offending code and a short error classification
framed in '(***' marks where it occurs in the program text.

Text output Text effected by corresponding CARP instructions.
Cursor position Indicates the current cursor position with its x- and y-values.

3.1.5. Plane Window (Starring .CAS File)

The Plane window is a text window where all cells of the cell matrix appear with their current state in
figure format (decimal or hexadecimal). The Plane window pops up after pressing the state control
button and selecting 'State' | 'Show'.

1 2 3 4 5

Figure 3.5 Plane window

Name Function

X-value Gives the current X-value, eventually increased by the values
for the border area (see XYBound settings).

Zet-value Number of states of a cell defined by the Zet setting.
Y-value Gives the current Y-value, eventually increased by the values

for the border area (see XYBound settings).
cell matrix figure format Current state of each cell in figure format.
Window and file label Indicates the name of the corresponding file (extension .CAS)

3.1.6. Palette Window (Starring .CAP File)

The Palette window displays the current values of the color palette (see the glossary at the end of
this manual). The Plane window pops up after pressing the palette customizing button and selecting
'Palette' | 'Show'.

Introductory notes 04.01.02

23

1 2 3 4

Figure 3.6 Palette window

Name Function

Mapping number Identifying number by which a state is assigned to a certain color.
Red-value First part of the RGB triple defining the 'Red' share of the color.
Green-value Second part of the RGB triple defining the 'Green' share of the color.
Blue-value Third part of the RGB triple defining the 'Blue' share of the color.

3.2 Menues

3.2.1. 'File'

Figure 3.7 Menu File

Name Function

New Creates a new empty cellular automaton environment.
Open... Opens an existing cellular automaton environment

(.CAT file) i.e. a kind of workspace or project file.
Save Saves current cellular automaton under a preset name.
Save As.. Saves current cellular automaton under a new name.
Set Font Customizes font for all text windows (global).
Print Text Prints the current text window.
Exit Leaves CAT.

3.2.2. 'Edit'

Figure 3.8 Menu Edit

Name Function

Undo Makes the last editing action undone.
Cut Deletes a marked text portion and keeps it in the temporary

text buffer.
Copy Copies a marked text portion and keeps it in the temporary

text buffer. Text remains unchanged.
Paste Inserts text copied to the temporary text buffer at the current

cursor position.
Delete Deletes a marked text portion. If no text is marked, the

character to the left of the current cursor position is deleted.
Clear All Deletes all the text. Be careful! This action cannot be

made undone by the undo function.

Most of the above items may only be selected if a text portion has been marked or if the temporary
text buffer has been filled.

Introductory notes 04.01.02

24

3.2.3. 'Search'

Figure 3.9 Menu Search

Name Function

Find... Finds a search pattern in the current text window
and highlights it if found.

Replace... Finds a search pattern in the current text window
and replaces it by another text.

Next Finds next position of a search pattern in the current text
window. Precondition: a search pattern has been already
defined.

3.2.4. 'Window'

Figure 3.10 Menu Window

Name Function

Tile Shares the available space equally for all CAT windows.
Cascade Makes a stack of all CAT windows such the window

labels are all visible. The last window is completely visible.
Arr. Icons If CAT windows have been iconified, all icons are put in

order on the bottom of the screen.
RECIPE Brings up the RECIPE window.
LIST Brings up the LIST window.
STATE Brings up the STATE window.
<wind. name>Brings up another CAT window if present (Plane, Palette).

3.2.5. '?' (Help)

Figure 3.11 Menu Help

Name Function

Help index Gives an overview on all available help items.
Help on Help Gives information on how to use the online help system.
About Gives information about CAT, especially about the people

who created CAT.

Alternatively, the online help system may be invoked by pressing the <F1> key.

Introductory notes 04.01.02

25

3.2.6. Menu Accessible via State Control Button

Figure 3.12 Menu State
Control Button

Name Function

S. Value 0 Initializes each cell of the cell matrix with value 0.
S. Value 1 Initializes each cell of the cell matrix with value 1.
S. Value n.. Initializes each cell of the cell matrix with value n.

A dialog box prompts you for the value needed (see p.26).
Rand. Value Initializes the cell matrix with random values inside

the range of defined states.
Centered Initializes the cell matrix with one extreme value in the

center and the other extreme value in the corners.
You are prompted for the settings required (see p.26).

Upstairs Initializes the cell matrix with stair-like patterns. The width of
the steps depends on the XYSize and Zet values.

Load... Loads an existing cell matrix saved as .CAS file (state).
Save Saves the current state of the cell matrix under the preset

name (.CAS file).
Save As.. Saves the current state of the cell matrix under a new

name (.CAS file).
Show Shows the current cell matrix represented by the correspon-

ding .CAS file in the Plane window (see p. 19).
Print... Prints the current cell matrix represented by the equivalent

.CAS file on your standard printer.

3.2.7. Menu Accessible via Palette Control Button

Figure 3.13 Menu Palette
Control Button

Name Function

B/W blend Defines a color palette with a blend of colors from
black to white. Granularity depends on the Zet value.

Color blend Defines a color palette with a blend of all defined colors.
The granularity of the blend depends on the Zet value.

By param. Defines a color palette with different initial and terminal
colors and differences on the distribution of colors. You are
prompted for all settings required (see p. 27).

Load Loads an existing color palette (.CAP file) and overwrites
the existing one.

Save Saves the current color palette under the preset name
(.CAP file).

Save As.. Saves the current color palette under a new name (CAP file).
Show Shows the current color palette as a text window (.CAP

file) in the Palette window (see p. 19 - 20).
Print Prints the current color palette (.CAP file).

Introductory notes 04.01.02

26

3.2.8. Menu Accessible via Menu Button

Figure 3.14 Menu Menu
Button

Name Function

Show Color Shows the states of all cells of the matrix in color
representation.

Show State Shows the states of all cells of the matrix in figure format.
Col. Mapping Shows the color mapping of each cell of the matrix in

figure format.
Hex Display Toggles between decimal or hexadecimal figure format

inside the STATE window.
Zoom Displays or suppresses the border area around the cell

matrix (if defined by a corresponding XYBound setting).
Refresh Renews the display of the cell matrix.

The items accessible via the menu button offer the same functions as some of the buttons of the
STATE window. Usage of one of these two kinds of triggering functions is a question of preference.
As the corresponding buttons the items of this menu have toggle logic: selecting them twice will
lead to the state where you started from.

3.2.9. Local Menu Accessible via Right Mouse Key

Figure 3.15 Menu Local
Menu (I)

Name Function

New Deletes the contents of the current text window and
creates a new empty text window.

Overload Loads an existing file substituting the current text
window. Be careful! File extensions are not checked.

Save Saves the current text window under the preset name.
Save As.. Saves the current text window under a new name.
Insert File Loads and inserts a text file at the current cursor position.
Set Font Customizes font for the current text windows (only local).
Print Prints the current text window.
Hide Window Hides the current window and shows the window on top of

the window stack.

In contrast to the functions of the 'File' menu (see p. 20), the effect of the above items is only local.

3.2.10. Local Menu Accessible via Shift / Right Mouse Key

Figure 3.16 Menu Local
Menu (II)

Name Function

Undo Makes the last editing action undone.
Cut Deletes a marked text portion and keeps it in the temporary

text buffer.
Copy Copies a marked text portion and keeps it in the temporary

text buffer. Text remains unchanged.
Paste. Inserts text copied to the temporary text buffer at the current

cursor position.
Delete Deletes a marked text portion.

Most of the above items may only be selected if either a text portion has been marked or the
temporary text buffer has been filled.

Introductory notes 04.01.02

27

3.3 Buttons and Labels

3.3.1. Buttons and Labels Contained in the Main Window

1 2 3 4 5 6 7

Figure 3.17 Buttons and labels of the main window

Name Function

Comp button Compiles the CARP program you have written in the RECIPE
window. No reaction means a successful compilation. Program
errors, however, are reported in the LIST window.

Setup button Carries out the code of the special event SetUp. This event should
contain definitions for a color palette, for a certain topology etc.

Event 0 / Step Carries out the code of the event 0 in single step mode.
Event 0 / Run Carries out the code of the event 0 in run (endless) mode.
Stop button Stops the execution of any event.
Done button Sorry! Not yet implemented.
Event label Appears as soon as the first event has been triggered and indicates

the current event and the mode it is running in.

Event buttons from E 0 to E 5 and the event button SetUp are assigned to the corresponding event
definitions of your CARP program.

You may also trigger an event in single step mode by pressing <ALT> and the number of the
corresponding event. <ALT> 3 is, for example, equivalent to clicking the E 3 / Step button.

Clicking any event button (SetUp, E 0 to E 5 in run or step mode) effects an implicit compilation if
the CARP program has been modified since the last compilation.

3.3.2. Buttons and Labels Contained in the STATE Window

1 2 3 4 5 6 7 8 9 10 11 12

Figure 3.18 Buttons and labels of the STATE window

Name Function

Show / hide matrix b. Switch to show or suppress display of the cell states by colors.
Numeric state b. Switch to display the state of each cell by figures.
Color mapping b. Displays the color mapping entry that is assigned to a single cell.
Hexadecimal format b. Switch to show the numbers in hexadecimal or decimal format.
Magnifier b. Switch to show or suppress the display of the border area.
Color customizing b. Changes the color that is assigned to a color mapping entry.
Repaint button Paints the STATE window with its cell matrix again.
State control b. Opens the menu State (initialization and other functions, see p.22).
Palette customizing b. Opens the menu Palette (changing and customizing a whole palette,

see p.22).

Introductory notes 04.01.02

28

Menu button Offers the same functions as menu items that are provided by some
of the above buttons, see p.23).

(11) Round counter Shows the number of executed rounds.
(12) Time label Shows the time passed by in hours : minutes : seconds , milliseconds

format (hh:mm:ss,msms).

Many of these buttons have toggle switch logic. The actual state of a toggle switch is indicated by a
little red hook.
Many of the functions executed by the above buttons can also be effected by corresponding CARP
procedures.

3.4 Dialog Boxes

3.4.1. 'Colors' Dialog Box

1 2 3 4

7

8

5 6

8

9

Figure 3.19 'Colors' dialog box

The 'Colors' dialog box pops up after clicking the color mapping button (see 6 in figure 3.18) or after
clicking shift and right mouse button having one cell selected in the STATE window.

Name Function

Slider for color blue. Defines the blue portion. Result is visible at .
Slider for color green Defines the green portion. Result is visible at .
Slider for color red Defines the red portion. Result is visible at .
Cell properties Gives state and assigned color mapping values of current cell.
Decimal color value Shows actual value for selected color in decimal format.
Hexadec. color value Shows actual value for selected color in hexadecimal format.
Control panel 'red' Shows the current color setting for color element 'red'.
Control panel 'green' Shows the current color setting for color element 'green'.
Control panel 'blue' Shows the current color setting for color element 'blue'.
Mixed color panel Shows the color created by mixing the three above elements.

Introductory notes 04.01.02

29

3.4.2. 'Assign Value' Dialog Box

Figure 3.20 'Assign Value' dialog box

The 'Assign Value' dialog box pops up after clicking the state control button (see 8 in figure 3.18)
and selecting Initialize States | Single Value n.... You are prompted for the value you want to assign
to each cell of the cell matrix. To take effect this value must be inside the range of defined states
(cp. Zet setting).

3.4.3. 'Initialize States' Dialog Box

1 2

Figure 3.21 'Initialize States' dialog box

The 'Initialize States' dialog box pops up after clicking the state control button (see 8 in figure 3.18)
and selecting Initialize States | Centered...

Name Function

Center options buttons Defines distribution of values with maximum in the center or at the
edges.

Variation text box Allowed variation of color distribution (in %). (May be neglected
in most cases).

Introductory notes 04.01.02

30

3.4.4. 'Initialize Palette' Dialog Box

1 2 3 4 5 6 7 8

Figure 3.22 'Initialize Palette' dialog box

The 'Initialize Palette' dialog box pops up after clicking the palette customizing button (see 9 in
figure 3.18) and selecting Initializing Palette | By parameters...

Name Function

'Uniform' option b. All three elements of the RGB triple are increased uniformly by their
corresponding 'Step' value from the first to the last defined color.

'Start' text box (u.) Defines the start value for each color (0 - 230).
'Step' text box (u.) Defines the interval by which the color value increases.
'blend from' drop-down b. Defines the color where the color blend begins at.
'Successively' option b. At first, only the 'red' value is increased by its 'Step' value until the

upper limit (255) has been reached. Then the 'green' value is in-
creased while the 'red' value remains constant and so on. Choose
high 'Step' values to use this option properly.

'Start' text box (s.) Defines the start value for each color (0 - 230)
'blend to' drop-down b. Defines the color where the color blend ends.
'Step' text box (s.) Defines the interval by which the color value increases.

A good means to observe the changes of the color palette caused by the 'Uniform' or 'Successively'
option is to display the color palette by means of the Palette | Show function (see p. 22).

Introductory notes 04.01.02

31

4. CARP Instructions Reference Guide

%

Syntax
% (operand)

Remarks
The % operator precedes a sequence of ones (1) and zeroes (0) that are interpreted as a bit
sequence. Therefore, the operand may only consist of a sequence of 1s and 0s.

By this, you can do bit manipulation in a more explicit form compared to treating integers as bit
values.

Example
RECIPE XYSize = 60;
 Zet = 4;
 Colors = 4;

CONST dead = %00; (* bit sequence 00 *)
 just_died = %01; (* bit sequence 01 *)
 just_born = %10; (* bit sequence 10 *)
 alive = %11; (* bit sequence 11 *)
 (* A *)
 (* | *)
 (* "alive bit" *)

REF east [1,0];
 west [-1,0];
 north [0,-1];
 south [0,1];
 north_ea [1,-1];
 north_we [-1,-1];
 south_ea [1,1];
 south_we [-1,1];

PROC add_second_bit:;(* procedure evaluates second bit of*)
 (* neighbors that indicates alive *)
 (* state and returns sum of found bits*)
BEGIN
RETURN ((east XOR %01) SHR 1) + ((west XOR %01) SHR 1)
 + ((north XOR %01) SHR 1) + ((south XOR %01) SHR 1)
 + ((north_ea XOR %01) SHR 1) + ((north_we XOR %01) SHR 1)
 + ((south_ea XOR %01) SHR 1) + ((south_we XOR %01) SHR 1)
END add_second_bit;

Introductory notes 04.01.02

32

*

Syntax
(operand) * (operand)

Remarks
The * operator multiplies two operands. As operands are allowed: integer constants, variables or
procedures that return an integer.

Example
VAR a, b;

EVENT 1;
b:= 17;
a := b * 4;

+

Syntax
(operand) + (operand)

Remarks
The + operator adds two operands. As operands are allowed: integer constants, variables or
procedures that return an integer.

Example
VAR temp;
CONST c = 2345;

EVENT 1;
temp:= c + 37;

-

Syntax
(operand) - (operand)

Remarks
The - operator subtracts two operands. As operands are allowed: integer constants, variables or
procedures that return an integer.

Example
VAR a, b;

EVENT 1;
b:= 17;
a := b - 4;

Introductory notes 04.01.02

33

:=

Syntax
(VAR) identifier | Self := expression;

Remarks
The assignment procedure ':=' attributes the value of an expression right to the assignment
procedure to any variable or the cell Self standing left to this procedure.

Example

EVENT E1;
PARALLEL DO
 Self := OddCell;
OD;
ShowPlane;

<

Syntax
(operand) < (operand)

Remarks
The < operator compares two operands in respect to size. If the first operand is smaller than the
second, the whole expression returns true, otherwise false.

Example
VAR a, b;

EVENT 1;
WHILE b < i DO
a := b + 48
OD;

<=

Syntax
(operand) <= (operand)

Remarks
The <= operator compares two operands in respect to size. If the first operand is smaller or equal
than the second, the whole expression returns true, otherwise false.

Example
VAR a, b;

EVENT 1;
IF b <= limit
THEN b := Any8Sum (a, b, c, d, e, f, g, h);
FI;

Introductory notes 04.01.02

34

<>

Syntax
(operand) <> (operand)

Remarks
The <> operator compares two operands in respect to unequality. If the first operand is unequal to
the second, the whole expression returns true, otherwise false.

Example
VAR a, b;

EVENT 1;
IF a <> limit
THEN a := a +1
ELSE a := limit
FI;

=

Syntax
(operand) = (operand)

Remarks
The = operator compares two operands in respect to equality. If the first operand is equal to the
second, the whole expression returns true, otherwise false.

Example
VAR a, b;

EVENT 1;
WHILE a = b DO
 Self := add_four_positions;
OD;

>

Syntax
(operand) > (operand)

Remarks
The > operator compares two operands in respect to size. If the first operand is greater than the
second, the whole expression returns true, otherwise false.

Example
VAR a, b;

EVENT 1;
IF b > a
 THEN b := a;
FI;

Introductory notes 04.01.02

35

>=

Syntax
(operand) >= (operand)

Remarks
The >= operator compares two operands in respect to size. If the first operand is greater or equal
compared to the second, the whole expression returns true, otherwise false.

Example
VAR a, b;

EVENT 1;
WHILE a >= 0 DO
 a := a -1;
OD;

A

AND

Syntax
(operand) AND (operand)

Remarks
The AND operator connects two operands and returns true, if both operands are true. All other
cases return false.

If the cells of your CAT model may only have the state 0 or 1, you may treat cells with the AND
operator, too.

Example
a := 8;
IF (a > limit) AND (b = 9)
 THEN a := Self FI;

Any8Sum

Syntax
Any8Sum (n1, n2, n3, n4, n5, n6, n7, n8);

Remarks

Any8Sum adds the state values of neighbors, variables or constants that follow as 8 parameters.

Example
REF knight_t_l [-1,-2]; (* possible jumps of *)
 knight_t_r [1,-2]; (* knights *)
 knight_b_l [-1,2];
 knight_b_r [1,2];
 knight_mt_l [-2,-1];
 knight_mt_r [2,-1];
 knight_mb_l [-2,1];

Introductory notes 04.01.02

36

 knight_mb_r [2,1];

EVENT E1;
PARALLEL DO

Self := Any8Sum
(knight_t_l, knight_t_r, knight_b_l, knight_b_r,
knight_mt_l, knight_mt_r, knight_mb_l, knight_mb_r);

OD;
ShowPlane;

B

BarrelForm

Syntax
BarrelForm;

Remarks
The topology BarrelForm forms a virtually barrelshaped matrix, i.e. the right and left edges of the
cell matrix are mutually copied to the opposite edge.

c m m m m m c
c m m m m m c
c m m m m m c
c m m m m m c
c m m m m m c
c m m m m m c
c m m m m m c

Topology BarrelForm (c = copied cell)

Example
EVENT SetUp;
BarrelForm;
PlClipActive;
ShowPlane;

Beep

Syntax
Beep (n);

Remarks
Returns n beeps.

This procedure is useful if you want to mark a crucial state of your cellular automaton model by an
acoustic signal.

Example
CONST max_value = 5478;
VAR x;
EVENT E0;
...
IF x >= max_value THEN Beep(1) FI;

Introductory notes 04.01.02

37

BEGIN ... END

Syntax
BEGIN
 statement;
 [statement;]
 ...
 [statement;]
END;

Remarks
Instructions bracketed by the keywords BEGIN and END may be used as an additional means for
structuring a CARP program. Usage is optional.

Example
(* Compound statement used within an "IF" statement *)
IF First < Last THEN
BEGIN
 Temp := First;
 First := Last;
 Last := Temp;
END;
FI;

Brake

Syntax
Brake;

Remarks
Stops the current event.

Example
FOR x := 1 TO x < 10 BY 2 DO

WRITE (x);
IF (x + 3) = 5

THEN Brake
ELSE y := x + 1

FI;
OD x;

C

Comments in a CARP program

Syntax
(* string *)

Introductory notes 04.01.02

38

Remarks
To keep your program self-explanatory even for later times, use comments in your CARP program.
Use pairs of "(*" and "*)" respectively to indicate start or end of a comment. Comments may
comprise several lines.

Example
REF left[-1,0]; up[0,-1]; right[0,1];
(* x counts negative for referenced cells
 on the top of cell Self *)

Colors

Syntax
Colors = n;

Remarks
Colors defines the number of available colors. The color actually assigned to a certain state may be
either interactively set by means of the color customizing button or by means of the RGBBrush
procedure.

Example
RECIPE XYSize = 140;
 XYBound = 3 ;
 Zet = 20;
 Colors = 20;

CONST

Syntax
CONST
 identifier = expression;

Remarks
A constant declaration (CONST) defines an identifier, which denotes a constant value within the
block containing the declaration. A constant identifier cannot be included in its own declaration. You
can only assign a value to a constant during the declaration.

Expressions used in constant declarations must be written in such a way that the compiler can
evaluate them at compile time.

A string cannot be assigned to a constant. If possible, use instead the WRITE procedure with a
string parameter.

Examples
(* Constant Declarations *)

CONST
 limit = 65000;
 KeyCode = 943762;

Introductory notes 04.01.02

39

D

DelBrushes

Syntax
DelBrushes;

Remarks
Deletes all color palette entries, which may be defined by means of the RGBBrush or the
RGBPalette procedure. Be careful! The color palette has to be redefined after the entries have been
deleted by the DelBrushes procedure.

Deleting of color palette entries may also affect the color display of MS Windows or other Windows
applications.

Example
EVENT SetUp;
DelBrushes; (* all color palette entries

 are now lost *)
RGBPalette (10, 0,20, 0,20, 0,20);
 (* color palette is now redefined *)

DIV

Syntax
(operand) DIV (operand)

Remarks
The DIV operator devides two operands and returns an integer as result of the whole expression.
As operands are allowed: integer constants, variables or procedures that return an integer.

Example
VAR a, b;
EVENT 1;
b:= 17;
a := b DIV 4; (* a is now 4 *)

E

EVENT

Syntax
EVENT [E<n>] | [SetUp];

statements;
[END.] | [EVENT E <n+1>;]

Remarks
An event is a program part that starts with the keyword "EVENT" plus identifier number plus
semicolon and ends with the next keyword "EVENT" or the keyword "END.". The identifier number
must be in the range from 0 to 5. An event is a program unit, which may be triggered by its

Introductory notes 04.01.02

40

corresponding single step or run button or by the SetUp button and whose code can be executed
independently at a time.
Each event should have one dominant function, e.g. initialization or the implementation of a specific
algorithm.

One CARP program may contain up to 6 events with identifiers from "E0" to "E5" and, additionally,
the special event SetUp.

Example
EVENT E0; (* initialization of cell plane *)
PlFillRandom (Dead,Alive);
ShowPlane;

EVENT E1;

Expressions

Expressions consist of operators and operands. These are the operands:

constants
A constant declaration (CONST) defines an identifier, which denotes a constant value within the
block containing the declaration. A constant identifier cannot be included in its own declaration.

variables
A variable (VAR) declaration associates an identifier and a type with a location in the memory where
values of that type can be stored.

procedures
A procedure may be either predefined or user-defined. User-defined procedures may be function
procedures or procedures using a side effect.

operators
The different types of operators existing in CAT (arithmetic operators, logic operators, comparative
operators,bit operators) allow to join operands.

Subexpressions can be enclosed in parentheses to change the order of precedence.

F

FOR ... TO ...BY ... DO ... OD

Syntax
FOR assignment TO expression [BY step] DO

statement;
OD loop_variable;

Remarks
The FOR ... OD instruction causes the statement after DO to be executed once for each case the
Boolean expression is true. The Boolean expression is checked after the first execution of
statement sequence. So, statement sequence is executed at least one time.

The loop variable is implicidly defined and may not be defined at the top of your CARP program.
The loop variable may be read inside a loop, but never be written to. After the loop is completed the
content of the loop variable is not defined any more.

Introductory notes 04.01.02

41

If the BY construct is used, you can change the interval by which the loop variable is incremented to
the value which follows BY.

Example
FOR x := 1 TO x < 10 BY 2 DO
 WRITE (x);
 IF (x + 3) = 5
 THEN Brake
 ELSE y := x + 1
 FI;
OD x;

G

GetX

Syntax
GetX;

Remarks
Returns the current x-value of the treated cell inside a PARALLEL DO loop.

Example
EVENT E1;
 PARALLEL DO
 ...
 IF top > 0
 THEN
 WRITE ('','Current x value : ', GetX);
 FI;
 OD;

GetY

Syntax
GetY;

Remarks
Returns the current y-value of the treated cell inside a PARALLEL DO loop.

Example
EVENT E1;
 PARALLEL DO
 IF top = 1
 THEN

WRITE (GetY);
 FI;
 OD;
 ShowPlane;

I

Introductory notes 04.01.02

42

Identifiers

Identifiers denote the following:

CONST(ants)
PROC(edures programs)
VAR(iables)

Identifiers can be formed of up to 31 characters.

- The first character of an identifier must be a letter. Upper or lower case letters are allowed at
any place.

- The characters that follow the first one must be letters, digits, or underscores (no spaces).

Like reserved words, identifiers are case-sensitive. Identifier may not coincide with reserved
words.

Examples
(* Identifiers *)
VAR Limit;
CONST A_State = 4;
 B_State = 8;

IF .. THEN .. ELSE .. FI

Syntax
IF expression THEN statement [ELSE statement] FI;

Remarks
IF, THEN and ELSE specify the conditions under which a statement will be executed.

If the Boolean expression after IF is true, the statement after THEN is executed. Otherwise, if the
ELSE part is present, the statement after ELSE is executed.

Example
x := Random (1000);
IF (x > 995)

THEN Self := Alive;
ELSE Self := Dead;

FI;

INV

Syntax
INV (operand)

Remarks
The INV operator has an integer or bit operand and converts all its zeroes to ones and all ones to

Introductory notes 04.01.02

43

zeroes. As operand is allowed: an integer constant, a variable, a procedure that returns an integer
or a bit operand.

Example
VAR a, b;

EVENT E4;
a := %110; (* 6 *)
b := INV a;
WRITE ('', ' a: ', a);
WRITE ('', ' INV a: ', b); (* result : - 7 *)
END.

M

MOD

Syntax
(operand) MOD (operand)

Remarks
The MOD operator devides two operands and returns the remainder as the result. As operands are
allowed: integer constants, variables or procedures that return an integer.

Example
VAR a, b;

EVENT 1;
b := 17;
a := b MOD 4;

MooreSum

Syntax
MooreSum

Remarks
MooreSum adds the state values of the northern, southern, western, eastern, northeastern,
northwestern, southeastern and southwestern neighbors of Self.

m m m m m
m O O O m
m O S O m
m O O O m
m m m m m

MooreSum (O = evaluated cell)

Example
EVENT E1;
PARALLEL DO

IF (MooreSum <> 4)
 Self := Ill;
FI;

Introductory notes 04.01.02

44

OD;
ShowPlane;

N

NeumannSum

Syntax
NeumannSum

Remarks
NeumannSum adds the state values of the northern, southern, western and eastern neighbors of
Self.

m m m m m
m m O m m
m O S O m
m m O m m
m m m m m

NeumannSum (O = evaluated cell)

Example
EVENT E1;
PARALLEL DO

IF (NeumannSum > 4)
Self := Red;
FI;

OD;
ShowPlane;

NOT

Syntax
NOT (operand)

Remarks
The NOT operator negates the result of the Boolean expression or operand that follows.

If the cells of your CAT model may only have the state 0 or 1, you may also use a cell denoter as
operand for NOT.

Example
IF NOT (a > limit)
 THEN a := Self
FI;

Introductory notes 04.01.02

45

O

OddCell

Syntax
OddCell

Remarks
OddCell provides access only to those cells whose x-value in the matrix is odd. This effects a cell
matrix resembling a chess-board.

The x-value is counted from the first top left cell to the last right bottom cell continuously. That
means for example that for a matrix with XYSize 31 the first cell of the second row is considered
even (i.e. 32nd cell).

Example
EVENT E1;
PARALLEL DO

Self := OddCell;
OD;
ShowPlane;

OR

Syntax
(operand) OR (operand)

Remarks
The OR operator connects two operands and returns true, if one or both operands are true. The
remaining case returns false.

If the cells of your CAT model may only have the state 0 or 1, you may treat cells with the OR
operator, too.

Example
IF (a > limit) OR (Self = 9) THEN a := Self FI;

P

PARALLEL DO

PARALLEL DO
 statement;
 [statement;]
OD;

Remarks
The PARALLEL DO executes the instructions of its body once for all cells of the cell matrix in
parallel.

Introductory notes 04.01.02

46

Internally, a copy of the present state of all cells at the beginning of the PARALLEL DO construct is
made, so that all conditional instructions etc. take the value contained in this copy. At the end, the
computed state of all cells is written back and kept for future evaluations.

Mostly, the Self procedure is used inside a PARALLEL DO construct as an important part of a cell-
related algorithm.

Example
EVENT E1;
 PlClipActive;
 PARALLEL DO
 Self := North XOR South XOR East XOR West;
 OD;
 ShowPlane;

ParallelMethod

Syntax
ParallelMethod;

Remarks
Is now the default method and needs not to be particularly defined.

In a future version of CAT, there will also be a method SequentialMethod.

Example
- - -

PillowForm

Syntax
PillowForm;

Remarks
The topology PillowForm assumes an axis in the middle of the matrix. Cells of the edges that have
the same distance to this axis are copied to their counterpart.

c4c3c2c1|c1c2c3c4
c m m m | m m m c
c m m m | m m m c
c m m m | m m m c
c m m m | m m m c
c m m m | m m m c
c4c3c2c1|c1c2c3c4

Topology PillowForm (c = copied cell)

Example
EVENT SetUp;
PillowForm;
PlClipActive;
ShowPlane;

Introductory notes 04.01.02

47

PipeForm

Syntax
PipeForm;

Remarks
The topology PipeForm forms a virtually pipe-shaped matrix (tube), i.e. the top and bottom edges of
the cell matrix are mutually copied to their opposite edges.

c c c c c c c
m m m m m m m
m m m m m m m
m m m m m m m
m m m m m m m
m m m m m m m
c c c c c c c

Topology PipeForm (c = copied cell)

Example
EVENT SetUp;
PipeForm;
PlClipActive;
ShowPlane;

PlClipActive

Syntax
PlClipActive;

Remarks
Restricts the effect of the subsequent instructions to the cell matrix without its border areas defined
by an optional XYBound declaration. This setting is the default value.

Example
EVENT SetUp;
 PlClipActive;
 RGBPalette (2, 20,10, 60,10, 80,10);

PlClipAll

Syntax
PlClipAll;

Remarks
Makes the whole cell matrix including the border areas available for subsequent instructions This
procedure is only useful if you want to initialize the border areas.

Example
EVENT SetUp;
 PlClipAll;
 RGBPalette (2, 20,10, 60,10, 80,10);

Introductory notes 04.01.02

48

PlClipXY

Syntax
PlClipXY (x, y);

Remarks
Shows a central portion of the whole cell matrix with the corresponding x- and y-values. Thus, you
can focus an area of special interest.

Example
EVENT E4;
 ...
 PlClipXY (10,10);

PlFillRandom

Syntax
PlFillRandom (Low, High);

Remarks
The procedure PlFillRandom initializes the cell matrix by random values ranging from parameter
Low to High.

Keep in mind the range of states, which are defined by the Zet declaration. If the range of possible
values produced by PlFillRandom exceeds the number of defined states, the range is restricted to
the Zet value.

To take effect the parameters must be inside the range of defined colors and states (cp. Zet) and
the smaller value must precede the greater one.

Example
EVENT E0;
PlFillRandom (0,10);
ShowPlane;

PlFillUni

Syntax
PlFillUni (n);

Remarks
Gives the whole cell matrix a uniform state, which is defined by the n parameter, and via the
associated color mapping value a uniform appearance.

To take effect the parameter must be inside the range of defined colors and states (cp. Zet).

Example
EVENT SetUp;
 PlClipActive;
 PlFillUni (32);
 ShowPlane;

Introductory notes 04.01.02

49

PlFillUpStairs

Syntax
PlFillUpStairs (Low, High, By);

Remarks
The procedure PlFillUpStairs creates a stair-like shape in the cell matrix. Thereby, the parameter
Low gives the lower state and colormapping value , High the higher state and colormapping value
and By the interval in which the range between Hi and Lo is filled. Useful for initialization purposes.

To take effect the parameters must be inside the range of defined colors and states (cp. Zet,
Colors).

Example
EVENT SetUp;
 PlClipAll;
 PlFillUpStairs (2, 20, 4);
 ShowPlane;

PROC

Syntax
PROC proc_identifier [VAR (identifier, identifier...)] :;
[VAR identifier;]
[CONST identifier;]
BEGIN

statement sequence;
[RETURN expression;]
END proc_identifier;

Remarks
A procedure is a program part, which performs a specific action, often based on a set of
parameters. CAT provides both the function procedure that returns a value and the normal
prodecure that exchanges data with the CARP program via variables declared in the procedure
head.

The procedure heading specifies the identifier for the procedure and the formal parameters (if any).
A procedure is activated by a procedure call.

The procedure heading is followed by:
- a declaration part that declares local objects,
- the statements between BEGIN and END, which specify what is to be executed when the
procedure is called.

A function procedure contains the keyword RETURN followed by an expression as last instruction.

Example
REF knight_t_l [-1,-2];
 knight_b_r [1,2];
 knight_mt_l [-2,-1];
 knight_mb_r [2,1];

(* procedure adds four positions that might be reached by knight moves *)
PROC add_4_positions (VAR ret):;

BEGIN

Introductory notes 04.01.02

50

ret := knight_t_l + knight_b_r + knight_mt_l + knight_mb_r;
END add_4_positions;

PROC add_4_pos:; (* the same more briefly and the *)
BEGIN (* procedure returning the value itself *)
RETURN knight_t_l + knight_b_r + knight_mt_l + knight_mb_r;
END add_4_pos;

EVENT E3;
PARALLEL DO
 WRITE ('', 'Value : ', add_4_pos);

 OD;
 ShowPlane;

R

Random

Syntax
Random (n);

Remarks
Returns a random number between 0 and n. Negative n values are not allowed.

Every call of a loop that contains the Random instruction produces the same sequence of results
for internal reasons. If you want to avoid this effect, use Randomize additionally.

Example
VAR x;

EVENT E0;
...
x := Random (1000);
IF x > 950 THEN add_four_positions FI;

Randomize

Syntax
Randomize;

Remarks
Creates a new base number for the random number generator.

This procedure is advisable if you want to prevent that each loop (PARALLEL DO, WHILE), that
contains a Random procedure produces the same sequence of random numbers. The Randomize
procedure should be used in the event SetUp or in the event containing the Random procedure.

Randomize should not be used, if you are searching for a program error that is related to random
numbers.

Introductory notes 04.01.02

51

Example
EVENT SetUp;
 RGBPalette(Colors, $0, 10, $32,10, $B6,10,);
 Randomize;

RECIPE

Syntax
RECIPE
[XYSize and/or XYBound declarations;]
[VAR declarations;]
[CONST declarations;]
[REF declarations;]
[PROC declarations;]
EVENT declarations;
statements;
END.

Remarks
A CARP program has to be started by the keyword "RECIPE" and terminates with the keyword
"END." ("END" followed by a point). Between these delimiters, you can declare variables, constants,
refered neighbors of a cell, user defined procedures and - as independently executable parts of a
CARP program - events.

Normally, the keyword RECIPE is followed by settings for the size of the cell matrix and evaluated
neighborhood, by definitions of constants (CONST) , variables (VAR) or referenced cells (REF) and
by events (EVENT) that contain the proper program functions. A template for a program may look
as follows:

Example
RECIPE XYSize = 50;
CONST ...;
VAR ...;
REF ...;

EVENT SetUp;
...

EVENT E0;
...

EVENT E1;...
...
END.

REF

Syntax
REF identifier [xvalue,yvalue]; (read)

Remarks
The REF declaration assigns a name to specified neighboring cells of the cell Self and allows such

Introductory notes 04.01.02

52

to refer to the value of these identified cells by their name. Precondition: The cell referred to may
not exceed the limits set by XYBound.

To use the value of a certain reference cell you have to do two things:
- Define a referenced cell.
- Use the defined neighbors within the program by referring to their names. Compare the

sample program part on the bottom:

Note:
- You may only read from referenced cells, not write to them. This is restricted to the procedure
Self.
- X-values to the right of Self and Y-values on the bottom of Self have a positive value.

Example
REF right_neighbor [1,0];
 left_neighbor [-1,0];
 top_neighbor [0,-1];
 bottom_neighbor [0,1];
...

EVENT E1;
 PARALLEL DO
 Self := top_neighbor OR left_neighbor OR Self OR
 right_neighbor OR bottom_neighbor;
 OD;
 ShowPlane;
END.

RePaint

Syntax
RePaint;

Remarks
Paints the graphic window again, if appearance or colors of the cell matrix are garbled. Scarcely
useful inside a CARP program, compare instead the corresponding RePaint button.

Example
- - -

REPEAT .. UNTIL

Syntax
REPEAT
 statement;
 [statement;]
UNTIL expression;

Remarks
The statements between REPEAT and UNTIL are executed in sequence until, at the end of the loop
body, the Boolean expression after UNTIL is true.

The sequence is executed at least once. The delimiter of the REPEAT ... UNTIL loop is a ';'.
Example

Introductory notes 04.01.02

53

x := 1;
REPEAT

IF (x + 3) = 8
THEN WRITE (x);
 x := x + 1
ELSE x := x + 1

FI;
UNTIL x > 15;

RGBBrush

Syntax
RGBBrush (n, r, g, b);

Remarks
Assigns the color mapping n the colors given by the parameters r(ed), g(reen) and b(blue).

This procedure is advisable, if you want to assign certain cell states to specific colors. (sample a)

This procedure may also be used if you want to change the previous overall color settings for a
special color at a given time (sample b).

Example
(sample a)

RECIPE XYSize = 60;
 Zet = 4;
 Colors = 4;

CONST dead = %00; (* bit sample 0000 *)
 just_died = %01; (* bit sample 0001 *)
 just_born = %10; (* bit sample 0010 *)
 alive = %11; (* bit sample 0011 *)
EVENT E0;
 RGBBrush (dead, 0, 0, 0); (* black *)
 RGBBrush (just_died, 152, 88, 46); (* brown *)
 RGBBrush (just_born, 74, 229, 3); (* light green *)
 RGBBrush (alive, 50, 174, 30); (* dark green *)

(sample b)

VAR cell_state;

EVENT E4;
IF generation_counter > 100

THEN RGBBrush (cell_state, 24 ,30, 30)
FI;

Introductory notes 04.01.02

54

RGBPalette

Syntax
RGBPalette (n, r0, ri, g0, gi, b0, bi);

Remarks
The procedure RGBPalette allows to define a set of colors and their dissemination on the color
palette. These parameters have to be defined:

n Number of colors to define. Generally, this number should comply with
the number of defined states (Zet).

r0 Starting point for the red value.
ri Increment value by which the red value increases. Values above 255 are

corrrected to a maximum value 255.
g0 Starting point for the green value.
gi Increment value by which the green value increases. Values above 255

are corrrected to a maximum value 255.
b0 Starting point for the blue value.
bi Increment value by which the blue value increases. Values above 255 are

corrrected to a maximum value 255.

Some general remarks: each defined color is a set of three values for their portion of red, green and
blue (rgb). Each of this component color has a definition range from 0 to 255 (hexadecimal $0 to
$FF). Red, green and blue each set to 255 result in the color white, red, green and blue each set to
0 result in the color black. That is the area, in which you may select certain colors.

Note:
RGBPalette sets the colors for your automaton tool model in a global way. Besides, you may define
a specific color by means of the RGBBrush procedure.
Colors defined either by RGBPalette or RGBBrush may be varied interactively later on by means of
the color customizing button. To use this button for particular colors is most advisable, because it is
very difficult to predict the resulting color only by defining the red, green and blue parameters.
Values for increments (ri, gi, bi) may also be negative. This makes sense together with high starting
values for r0, g0 or b0.
Values may be given as decimal or hexadecimal figures with leading $.

The example program below will generate this color palette:
r-value g-value b-value

color 1 30 40 50
color 2 45 55 65
color 3 60 70 80
color 4 75 85 95
color 5 90 100 110

Example
EVENT SetUp;
RGBPalette (5, 30,15, 40,15, 50,15);

RingForm

Syntax
RingForm;

Remarks

Introductory notes 04.01.02

55

The topology RingForm forms a virtual endless matrix connecting at first two edges and then the
edges of the built up pipe. This body is also known as thorus. The RingForm topology is the default
setting and therefore, the RingForm instruction may be omitted.

c c c c c c c
c m m m m m c
c m m m m m c
c m m m m m c
c m m m m m c
c m m m m m c
c c c c c c c

Topology RingForm (c = copied cell)

Example
EVENT SetUp;
RingForm;
PlClipActive;
ShowPlane;

S

Self

Syntax
Self (read / write)

Remarks
The only instruction to change the state of a cell and thereby the whole cell matrix is Self. All other
cell matrix-related procedures only allow reading of a cell state.

Self is strongly connected with the PARALLEL DO instruction. Inside a PARALLEL DO cycle, Self
allows for each cell read or write access.

All instructions inside a PARALLEL DO and related to Self and other referred cells have to be
thought of as actually happening simultaneously. (In fact, on a single CPU computer, a copy of the
state of all cells will be made, and, depending on these values, the instructions for all cells will be of
course carried out subsequently.) But focussing on CAT's concept, Self and PARALLEL DO are the
decisive keys to leave array treatment and such things behind and turn to the new programming
paradigm 'the cell in its environment'.

The effect of the sample instructions below (it implements Conveys Life program): For each cell of
the cell matrix will be controlled as to whether Self is 'alive' (read access) and has two or three
'alive' neighbors ('alive' is assigned to the state 1 of a cell). If this is true, Self will be set to 'alive'
(write access with the ':=' procedure). Otherwise, if Self is 'dead' and has three 'alive' neighbors,
Self will be set again to 'alive'. In all other cases, Self will be considered as 'too lonely' or
'overcrowded' and therefore set to 'dead'.

Example
PARALLEL DO

IF (Self = Alive) AND
 ((MooreSum = 3) OR (MooreSum = 2))
THEN Self := Alive
ELSE IF (Self = Dead) AND (MooreSum = 3)

Introductory notes 04.01.02

56

THEN Self := Alive
ELSE Self := Dead

 FI
FI;

OD;

SetLattice

Syntax
SetLattice (thickness, foregroundcolor, backgroundcolor);

Remarks
Returns a lattice pattern originating from the center of your cell matrix with free spaces of size
'thickness' and with the corresponding fore- and backgroundcolors.

Example
EVENT SetUp;
PlClipActive;
SetLattice(3,1,19);

SheetForm

Syntax
SheetForm;

Remarks
The topology SheetForm makes the evaluation of algorithms end on the edges of the cell matrix
without any further continuation on other edges.

m m m m m m m
m m m m m m m
m m m m m m m
m m m m m m m
m m m m m m m
m m m m m m m
Topology SheetForm (m = normal cell,
no copied cell)

Example
EVENT SetUp;
SheetForm;
PlClipActive;
ShowPlane;

SHL

Syntax
(operand) SHL (operand)

Introductory notes 04.01.02

57

Remarks
The SHL operator shifts all bits of a binary digit by the value of the second operand times to the left.
Leading digits are filled by 0.

This works for integer variables, constants or referenced cells interpreted as binary values as well
as for explicitly defined binary digits. In the following sample the variable b returns the value 12 both
times.

Example
a := %110; (* 6 *) (* using bit operator *)
b := a SHL 1;
WRITE ('',b);

 (* without bit operator *)
a := 6;
b := a SHL 1;
WRITE ('',b);

ShowCell

Syntax
ShowCell (n);

Remarks
This procedure shows the current state of the cell with the x-value n.

This value is computed as n = x + (XSize * (y - 1)). (An example: in a cell matrix with XYSize = 10
the first cell in the top left corner counts 0 and the last cell in the bottom right corner counts 99.)

This procedure is very CPU-time-consuming and should only be used if the focus is on a single cell.

Example
EVENT E1;
 PARALLEL DO
 IF x > delimiter
 THEN
 Self := (NeumannSum + Self) > 0
 FI;
 OD;
 ShowCell (74);
 ShowCell (75);
 ShowCell (76);

ShowKind

Syntax
ShowKind (w);

Remarks
Shows the state and color mapping of a single cell.

Useful only if the focus is on these settings of a single cell. Can then be combined with the
ShowCell procedure.

Example

Introductory notes 04.01.02

58

EVENT E1;
 ShowKind (74);
 ShowKind (75);
 ShowKind (76);
 ShowCell (74);
 ShowCell (75);
 ShowCell (76);

ShowPlane

Syntax
ShowPlane;

Remarks
This function is necessary for showing the whole cell matrix in its current state. Should normally
occur at the end of any event description for control purposes. If your cellular automaton model is
very CPU time-consuming, you can order to display only every tenth or whatever generation of your
CAT model.

Never use ShowPlane inside a PARALLEL DO instruction, for this might crash CAT.

Example
EVENT E1;
...
IF i < 50

THEN ShowPlane
ELSE IF i MOD 10 = 0

THEN ShowPlane
FI

FI;
i := i +1;

SHR

Syntax
(operand) SHR (operand)

Remarks
The SHR operator shifts all bits of a binary digit by the value of the second operand times to the
right. Leading digits are filled by 0.

This works for integer variables, constants or referenced cells interpreted as binary values as well
as for explicitly defined binary digits.

Example
(* life model (cp. Convey) with four different states: *)
(* life, just_born, dead, just_died *)

RECIPE XYBound = 60;

CONST dead = %00; (* bit sample 0000 *)
 just_died = %01; (* bit sample 0001 *)
 just_born = %10; (* bit sample 0010 *)
 alive = %11; (* bit sample 0011 *)

Introductory notes 04.01.02

59

 (* A *)
 (* "alive bit" *)

REF right_n [1,0];
 left_n [-1,0];
 top_n [0,-1];
 bot_n [0,1];

PROC add_second_bit:;
(* procedure evaluates second bit of neighbors that *)
(* indicate alive state and returns sum of found bits*)

BEGIN *)
RETURN ((right_n XOR %01) SHR 1) + ((left_n XOR %01) SHR 1) + ((top_n XOR
%01) SHR 1) + ((bot_n XOR %01) SHR 1)
END add_second_bit;

EVENT E0;
 RGBBrush (dead, 0, 0, 0); (* black *)
 RGBBrush (just_died, 152, 88, 46); (* brown *)
 RGBBrush (just_born, 74, 229, 3); (* light green *)
 RGBBrush (alive, 50, 174, 30); (* dark green *)

EVENT E1;
PARALLEL DO
a := add_second_bit;

IF (a = 2) OR (a = 3)
 THEN IF (a = 3) AND ((Self = dead) OR (Self = just_died))
 THEN Self := just_born;
 ELSE Self := alive
 FI;
 ELSE IF (Self = alive) OR (Self = just_born)
 THEN Self := just_died;
 ELSE Self := dead;
 FI;
FI;
OD;
ShowPlane;

END.

Statement

A statement is one of the following:

assignment (:=)
BEGIN..END
FOR..TO..BY..DO..OD
PARALLEL...DO
IF..THEN..ELSE FI
PROC(edure)
REPEAT .. UNTIL
WHILE .. DO .. OD

V

Introductory notes 04.01.02

60

VAR

Syntax

 VAR
 identifier, ... identifier;

Remarks
A variable (VAR) declaration associates an identifier with a location in the memory where values
can be stored.

You may not combine a declaration of a variable with an assignment like you might expect from the
usage of constants. Assign a value to the variable inside an event.

Examples
(* Variable Declarations *)
 VAR
 x , y , z;

x := 3;

W

WHILE ... DO ... OD

Syntax
WHILE expression DO statement OD;

Remarks
A WHILE statement contains an expression, which controls the repeated execution of one or
several statements embraced by the keywords 'DO' and 'OD'. The statement after DO is executed
repeatedly as long as the Boolean expression is true.

The expression is evaluated before the statement is executed, so if the expression is false at the
beginning, the statement will not be executed at all.

Example
WHILE i < 20 DO

Self := NeumannSum DIV 2;
i := i + 1 OD;

WinClipActive

Syntax
WinClipActive;

Remarks
Shows only the active part of the cell matrix without any border areas. WinClipAll or WinClipActive
are only relevant for the appearance of the STATE window.
The same can be achieved interactively by means of the magnifier button.

Example
EVENT SetUp;

Introductory notes 04.01.02

61

 RGBPalette(Colors, $0, $FF, $32,0, $B6,0);
 WinClipActive;
 ShowPlane;

WinClipXY

Syntax
WinClipXY (x, y);

Remarks
Shows a central portion of the whole cell matrix with the corresponding x- and y-values. Thus, you
can focus on an area of special interest.

Example
EVENT E4;
PlFillRandom (1,4);
WinClipXY (5, 5);

WinClipAll

Syntax
WinClipAll;

Remarks
Shows the whole cell matrix including the border areas. WinClipAll or WinClipActive are only
relevant for the appearance of the STATE window.

The same can be done interactively by means of the magnifier button.

Example
EVENT SetUp;
 RGBPalette(Colors, $0, $FF, $32,0, $B6,0);
 WinClipAll;
 ShowPlane;

WrDCaps

Syntax
WrDCaps;

Remarks
Acronym for 'Write Display Capabilities'. The corresponding values specific to your data display are
written into the LIST window. Useful for system administration and service purposes, especially on
graphic resolution issues. A possible output in the LIST window:

 Display capabilities

 H/V Resolution : 1024 768
 Pixel/Planes : 8 1

Introductory notes 04.01.02

62

 Colors : 20
 Palette/reserv : 256 20

Example
EVENT SetUp;
 RGBPalette(Colors, 127, 2, 127,30, 127,30);
 ShowPlane;
 WrDCaps;

WRITE

Syntax
WRITE ([string] | [(VAR) identifier] | [(CONST) identifier] | [(PROC)
identifier] [:n] ['']);

Remarks
Writes the contents of variables, constants, values of function procedures or strings to the LIST
window and the .CAL file. Different operands have to be devided by a comma, strings must be
included by ' (apostrophe).

Several facilities are provided for formatting the output:
[(var):n] If the contents of the variable or the constant has less than n

digits, the output is indended accordingly.
' ' Put at the end or beginning of the parameter list, a carriage return

/ linefeed (CR/LF) at the end or beginning of the output is caused.

If the buffer to which all data is moved is full, you will get the message "Editor buffer is full" and will
be prompted whether you want to overwrite the contents or stop writing. All written informations may
later be inspected by means of the LIST window.

Example
IF (x > limit)
 THEN WRITE ('','Limit exceeded with value : ');
 WRITE (x : 8, '');
FI;

WrMCaps

Syntax
WrMCaps;

Remarks
Acronym for 'Write Memory Capabilities'. The corresponding values of RAM (Random Access
Memory) usage specific to your hardware and operating system configuration are written into the
LIST window. Useful for system administration and service purposes, especially if you are in doubt
about sufficient memory (RAM).

A possible output in the LIST window may look as follows:

 Memory and resources

 Mem_free KB : 47730
 Mem_block KB : 16320
 Sys_Res % : 62

Introductory notes 04.01.02

63

 GDI_Res % : 62
 Usr_Res % : 83

Example
EVENT SetUp;
 RGBPalette(Colors, 127, 2, 127,30, 127,30);
 ShowPlane;
 WrMCaps;

WrPPars

Syntax
WrPPars;

Remarks
Acronym for 'Write Plane Parameters'. The corresponding values for your actual CAT cell matrix
configuration are written into the LIST Window. Useful for system administration and debugging
purposes.

A possible output in the LIST window may look as follows:

 CAT actual parameters

 X/YSize : 31 31
 X/YBound : 3 3
 X/YTotal : 37 37
 Act/TotSz : 961 1369
 Org/Skip : 114 6

Example
EVENT SetUp;
 RGBPalette(Colors, 127, 2, 127,30, 127,30);
 ShowPlane;
 WrPPars;

X

XOR

Syntax
(operand) XOR (operand)

Remarks
The XOR operator adds two operands and returns true if one of the two operands returns true and
the other false. If both the operands return true or false, the whole expression returns false. As
operands are allowed: integer constants, variables, referenced cells or procedures that return an
integer.

Example
b := 8;
IF (a > limit) XOR (b = 8)
 THEN a := Self

Introductory notes 04.01.02

64

FI;

XYBound

Syntax
XYBound = n;

Remarks
Defines the range of the neighborhood of the cell Self (in x and y values) that can be evaluated by
any instruction of your CARP program. Referenced cells (REF) must be inside the range of the
XYBound.

XYBound defines moreover the width of the border area of the cell matrix that is shown if the
PlClipAll procedure is used or that is effected by an equivalent setting of the magnifier button.

Example
RECIPE XYSize = 140;
 XYBound = 1 ;

REF east [1,0];
 west [-1,0];
 north [0,-1];
 south [0,1];
 north_ea [1,-1];
 north_we [-1,-1];
 south_ea [1,1];
 south_we [-1,1];

PROC add_second_bit:;(* procedure evaluates second bit of*)
 (* neighbors indicating alive state *)
BEGIN (* and returns sum of found bits *)
RETURN ((east XOR %01) SHR 1) + ((west XOR %01) SHR 1) +
 ((north XOR %01) SHR 1) + ((south XOR %01) SHR 1) +
 ((north_ea XOR %01) SHR 1) +((north_we XOR %01) SHR 1) +
 ((south_ea XOR %01) SHR 1) + ((south_we XOR %01) SHR 1)
END add_second_bit;

XYSize

Syntax
XYSize = n;

Remarks
Defines the horizontal (x) and vertical (y) size of a cell matrix. If you want to define a different YSize
compared to XSize, you can use the YSizedeclaration.

Keep in mind that high XYSize values are very CPU time-consuming.

Example
RECIPE XYSize = 120;
 XYBound = 2;

Introductory notes 04.01.02

65

Y

YSize

Syntax
YSize = n;

Remarks
Defines the vertical (y) size of a cell matrix

Keep in mind that high XYSize or YSize values are very CPU time-consuming

Example
RECIPE XYSize = 120;
 YSize = 100;

Z

Zet

Syntax
Zet = n;

Remarks
Zet is the number of different states that can be adopted by any cell. The Zet value complies
normally with the number of available Colors.

Example
RECIPE XYSize = 140;
 XYBound = 3 ;
 Zet = 20;
 Colors = 20;

	Cellular Automaton Tool User Manual
	
	
	Gesellschaft für Mathematik und Datenverarbeitung
	Postfach 1316
	D - 53731 Sankt Augustin 1
	Cellular Automaton Tool
	Version 8.10.93
	User Manual
	Author:
	Georg Jünger
	(C) Copyright 1993 by GMD, Sankt Augustin

	Table of Contents
	1. Introductory Notes
	2. Quick Tour through CAT
	2.1 Starting CAT
	2.2 Loading and Compiling a Program
	2.3 Executing and Controlling a Program
	2.4 Editing a Program
	2.5 Printing
	2.6 Window Handling
	2.7 Changing Properties and Appearance of the Cell Matrix
	2.8 Using the Online Help System
	2.9 Leaving CAT

	3. Complete Overview of Windows, Menus, Buttons and Boxes
	3.1 Windows
	3.1.1. CAT Main Window
	3.1.2. STATE Window
	3.1.3. RECIPE Window
	3.1.4. LIST Window
	3.1.5. Plane Window (Starring .CAS File)
	3.1.6. Palette Window (Starring .CAP File)

	3.2 Menues
	3.2.1. 'File'
	3.2.2. 'Edit'
	3.2.3. 'Search'
	3.2.4. 'Window'
	3.2.5. '?' (Help)
	3.2.6. Menu Accessible via State Control Button
	3.2.7. Menu Accessible via Palette Control Button
	3.2.8. Menu Accessible via Menu Button
	3.2.9. Local Menu Accessible via Right Mouse Key
	3.2.10. Local Menu Accessible via Shift / Right Mouse Key

	3.3 Buttons and Labels
	3.3.1. Buttons and Labels Contained in the Main Window
	3.3.2. Buttons and Labels Contained in the STATE Window

	3.4 Dialog Boxes
	3.4.1. 'Colors' Dialog Box
	3.4.2. 'Assign Value' Dialog Box
	3.4.3. 'Initialize States' Dialog Box
	3.4.4. 'Initialize Palette' Dialog Box

	4. CARP Instructions Reference Guide
	%
	Syntax
	Remarks
	Example

	*
	Syntax
	Remarks
	Example

	+
	Syntax
	Remarks
	Example

	-
	Syntax
	Remarks
	Example

	:=
	Syntax
	Remarks
	Example

	<
	Syntax
	Remarks
	Example

	<=
	Syntax
	Remarks
	Example

	<>
	Syntax
	Remarks
	Example

	=
	Syntax
	Remarks
	Example

	>
	Syntax
	Remarks
	Example

	>=
	Syntax
	Remarks
	Example

	A
	AND
	Syntax
	Remarks
	Example

	Any8Sum
	Syntax
	Remarks
	Example

	B
	BarrelForm
	Syntax
	Remarks
	Example

	Beep
	Syntax
	Remarks
	Example

	BEGIN ... END
	Syntax
	Remarks
	Example

	Brake
	Syntax
	Remarks
	Example

	C
	Comments in a CARP program
	Syntax
	Remarks
	Example

	Colors
	Syntax
	Remarks
	Example

	CONST
	Syntax
	Remarks
	Examples

	D
	DelBrushes
	Syntax
	Remarks
	Example

	DIV
	Syntax
	Remarks
	Example

	E
	EVENT
	Syntax
	Remarks
	Example

	Expressions
	F
	FOR ... TO ...BY ... DO ... OD
	Syntax
	Remarks
	Example

	G
	GetX
	Syntax
	Remarks
	Example

	GetY
	Syntax
	Remarks
	Example

	I
	Identifiers
	Examples

	IF .. THEN .. ELSE .. FI
	Syntax
	Remarks
	Example

	INV
	Syntax
	Remarks
	Example

	M
	MOD
	Syntax
	Remarks
	Example

	MooreSum
	Syntax
	Remarks
	Example

	N
	NeumannSum
	Syntax
	Remarks
	Example

	NOT
	Syntax
	Remarks
	Example

	O
	OddCell
	Syntax
	Remarks
	Example

	OR
	Syntax
	Remarks
	Example

	P
	PARALLEL DO
	Remarks
	Example

	ParallelMethod
	Syntax
	Remarks
	Example

	PillowForm
	Syntax
	Remarks
	Example

	PipeForm
	Syntax
	Remarks
	Example

	PlClipActive
	Syntax
	Remarks
	Example

	PlClipAll
	Syntax
	Remarks
	Example

	PlClipXY
	Syntax
	Remarks
	Example

	PlFillRandom
	Syntax
	Remarks
	Example

	PlFillUni
	Syntax
	Remarks
	Example

	PlFillUpStairs
	Syntax
	Remarks
	Example

	PROC
	Syntax
	Remarks
	Example

	R
	Random
	Syntax
	Remarks
	Example

	Randomize
	Syntax
	Remarks
	Example

	RECIPE
	Syntax
	Remarks
	Example

	REF
	Syntax
	Remarks
	Example

	RePaint
	Syntax
	Remarks
	Example

	REPEAT .. UNTIL
	Syntax
	Remarks
	Example

	RGBBrush
	Syntax
	Remarks
	Example

	RGBPalette
	Syntax
	Remarks
	Example

	RingForm
	Syntax
	Remarks
	Example

	S
	Self
	Syntax
	Remarks
	Example

	SetLattice
	Syntax
	Remarks
	Returns a lattice pattern originating from the center of your cell matrix with free spaces of size 'thickness' and with the corresponding fore- and backgroundcolors.
	Example

	SheetForm
	Syntax
	Remarks
	Example

	SHL
	Syntax
	Remarks
	Example

	ShowCell
	Syntax
	Remarks
	Example

	ShowKind
	Syntax
	Remarks
	Example

	ShowPlane
	Syntax
	Remarks
	Example

	SHR
	Syntax
	Remarks
	Example

	Statement
	V
	VAR
	Syntax
	Remarks
	Examples

	W
	WHILE ... DO ... OD
	Syntax
	Remarks
	Example

	WinClipActive
	Syntax
	Remarks
	Example

	WinClipXY
	Syntax
	Remarks
	Example

	WinClipAll
	Syntax
	Remarks
	Example

	WrDCaps
	Syntax
	Remarks
	Example

	WRITE
	Syntax
	Remarks
	Example

	WrMCaps
	Syntax
	Remarks
	Example

	WrPPars
	Syntax
	Remarks
	Example

	X
	XOR
	Syntax
	Remarks
	Example

	XYBound
	Syntax
	Remarks
	Example

	XYSize
	Syntax
	Remarks
	Example

	Y
	YSize
	Syntax
	Remarks
	Example

	Z
	Zet
	Syntax
	Remarks
	Example

